Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 49

Answer

$$ - {x^2}\left( { - x + 4} \right)\left| { - x + 4} \right| - \frac{2}{3}x{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| - \frac{1}{6}{\left( { - x + 4} \right)^3}\left| { - x + 4} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {2{x^2}\left| { - x + 4} \right|} dx \cr & {\text{Integrate by parts }} \cr & {\text{Let }}u = 2{x^2},{\text{ }}du = 4xdx \cr & dv = \left| { - x + 4} \right|dx,{\text{ }}v = \int {\left| { - x + 4} \right|} dx \cr & {\text{By the given table of integrals }}\int {\left| {ax + b} \right| = \frac{1}{{2a}}\left( {ax + b} \right)\left| {ax + b} \right| + C} \cr & v = \int {\left| { - x + 4} \right|} dx = - \frac{1}{2}\left( { - x + 4} \right)\left| { - x + 4} \right| \cr & {\text{Using the formula of integration by parts}} \cr & \int u dv = uv - \int v du \cr & \int {2{x^2}\left| { - x + 4} \right|} dx = - \frac{{2{x^2}}}{2}\left( { - x + 4} \right)\left| { - x + 4} \right| \cr & {\text{ }} + \int {\frac{1}{2}\left( { - x + 4} \right)\left| { - x + 4} \right|\left( {4x} \right)} dx{\text{ }}\left( {\bf{1}} \right) \cr & \cr & {\text{Integrating }}\int {\frac{1}{2}\left( { - x + 4} \right)\left| { - x + 4} \right|\left( {4x} \right)} dx{\text{ by parts}} \cr & = \int {2x\left( { - x + 4} \right)\left| { - x + 4} \right|} dx \cr & = \int {2x\left( { - x + 4} \right)\left| { - x + 4} \right|} dx \cr & {\text{Let }}u = 2x,{\text{ }}du = 2dx \cr & dv = \left( { - x + 4} \right)\left| { - x + 4} \right|dx,{\text{ }}v = - \frac{1}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| \cr & {\text{Using the formula of integration by parts}} \cr & \int u dv = uv - \int v du \cr & = - \frac{{2x}}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| + \int {\frac{1}{3}{{\left( { - x + 4} \right)}^2}\left| { - x + 4} \right|} \left( 2 \right)dx \cr & = - \frac{{2x}}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| + \frac{2}{3}\int {{{\left( { - x + 4} \right)}^2}\left| { - x + 4} \right|} dx \cr & {\text{By the given tables }} \cr & \int {{{\left( {ax + b} \right)}^2}\left| {ax + b} \right|dx = \frac{1}{{4a}}{{\left( {ax + b} \right)}^3}} \left| {ax + b} \right| + C,{\text{ then}} \cr & = - \frac{{2x}}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| + \frac{2}{3}\left( { - \frac{1}{4}{{\left( { - x + 4} \right)}^3}\left| { - x + 4} \right|} \right) + C \cr & = - \frac{{2x}}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| - \frac{1}{6}{\left( { - x + 4} \right)^3}\left| { - x + 4} \right| + C \cr & {\text{Substituting the previous result into }}\left( {\bf{1}} \right) \cr & = - \frac{{2{x^2}}}{2}\left( { - x + 4} \right)\left| { - x + 4} \right| - \frac{{2x}}{3}{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| \cr & - \frac{1}{6}{\left( { - x + 4} \right)^3}\left| { - x + 4} \right| + C \cr & {\text{Simplifying}} \cr & = - {x^2}\left( { - x + 4} \right)\left| { - x + 4} \right| - \frac{2}{3}x{\left( { - x + 4} \right)^2}\left| { - x + 4} \right| \cr & - \frac{1}{6}{\left( { - x + 4} \right)^3}\left| { - x + 4} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.