Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 29

Answer

$x^2 e^x - 2x e^{x}+2e^x- \dfrac{1}{2}e^{x^2}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ $\displaystyle \int (x^2 e^{x}-xe^{x^2}) \ dx=\int x^2 e^{x}\ dx -\int xe^{x^2} \ dx$ or, $=x^2 e^x -\int e^{x} (2x) \ dx- \int xe^{x^2} \ dx$ or, $=x^2 e^x - 2(x e^{x}-e^x)- \dfrac{1}{2}e^{x^2}+C$ or, $=x^2 e^x - 2x e^{x}+2e^x- \dfrac{1}{2}e^{x^2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.