Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 46

Answer

$$\frac{1}{2}x\left( {x + 4} \right)\left| {x + 4} \right| - \frac{1}{6}{\left( {x + 4} \right)^2}\left| {x + 4} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {x\left| {x + 4} \right|} dx \cr & {\text{Integrate by parts }} \cr & {\text{Let }}u = x,{\text{ }}du = dx \cr & dv = \left| {x + 4} \right|dx,{\text{ }}v = \int {\left| {x + 4} \right|} dx \cr & {\text{By the given table of integrals }} \cr & v = \int {\left| {x + 4} \right|} dx = \frac{1}{2}\left( {x + 4} \right)\left| {x + 4} \right| \cr & {\text{Using the formula of integration by parts}} \cr & \int u dv = uv - \int v du \cr & \int {x\left| {x + 4} \right|} dx = \frac{1}{2}x\left( {x + 4} \right)\left| {x + 4} \right| - \int {\frac{1}{2}\left( {x + 4} \right)\left| {x + 4} \right|} dx \cr & \int {x\left| {x + 4} \right|} dx = \frac{1}{2}x\left( {x + 4} \right)\left| {x + 4} \right| - \frac{1}{2}\int {\left( {x + 4} \right)\left| {x + 4} \right|} dx \cr & {\text{By the given table of integrals we solve }}\int {\left( {x + 4} \right)\left| {x + 4} \right|} dx \cr & \int {\left( {x + 4} \right)\left| {x + 4} \right|} dx = \frac{1}{3}{\left( {x + 4} \right)^2}\left| {x + 4} \right| + C,{\text{ then }} \cr & \int {x\left| {x + 4} \right|} dx = \frac{1}{2}x\left( {x + 4} \right)\left| {x + 4} \right| - \frac{1}{6}{\left( {x + 4} \right)^2}\left| {x + 4} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.