Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1022: 34

Answer

$e-7e^{-1}$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=x^2+x$ and $dv=e^{-x} dx \implies v=-e^{-x}$ $\displaystyle \int_{-1}^1 (x^2+x) e^{-x} \ dx= -(x^2+x) e^{-x}+\int_{-1}^1 (2x+1)e^{-x} dx$ or, $= -(x^2+x) e^{-x}-(2x+1)e^{-x}+2\int_{-1}^1 e^{-x} dx$ or, $=[-(x^2+x) e^{-x}-(2x+1)e^{-x}-2e^{-x}]_{-1}^1$ or, $=-2e^{-1}-3e^{-1}-2e^{-1}-e+2e$ or, $=e-7e^{-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.