Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1021: 8

Answer

$\displaystyle \frac{(x^2+1)(e^{3x+1})}{2}-\frac{2xe^{3x+1}}{9}-\frac{2}{27} e^{3x+1}+C$

Work Step by Step

We will solve the given integral by using integrate-by-parts formula such as: $\int udv=uv-\int v du$ Here, $u=\int (x^2+1) e^{3x+1} \ dx$ and $dv=e^{3x+1} dx$ $\displaystyle \int(x^{2}+1)e^{3x+1}dx=\displaystyle \frac{(x^2+1)(e^{3x+1})}{3}-\frac{2}{3}\int xe^{3x+1} \ dx$ $=\displaystyle \frac{(x^2+1)(e^{3x+1})}{2}-\frac{2xe^{3x+1}}{9}-\frac{2}{9}(\dfrac{1}{3} e^{3x+1})+C$ $=\displaystyle \frac{(x^2+1)(e^{3x+1})}{2}-\frac{2xe^{3x+1}}{9}-\frac{2}{27} e^{3x+1}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.