Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1021: 3

Answer

$\int(3x-1)e^{-x}dx=-3xe^{-x}-2e^{-x}dx+C$

Work Step by Step

We integrate as follows: $u=3x-1$ $D(u)=3$ $v=e^{-x}$ $I(v)=-e^{-x}$ $\int u·v~dx=u·I(v)-\int D(u)I(v)dx$ $\int(3x-1)e^{-x}dx=-(3x-1)e^{-x}-\int 3(-e^{-x})dx=-3xe^{-x}+e^{-x}+\int 3e^{-x}dx=-3xe^{-x}+e^{-x}-3e^{-x}dx+C=-3xe^{-x}-2e^{-x}dx+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.