Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1021: 7

Answer

$-\displaystyle \frac{1}{4}e^{-2x+4}(2x^{2}+2x+3)+C$

Work Step by Step

We integrate as follows: $\left[\begin{array}{llll} \hline & D & & I\\ \hline+ & x^{2}+1 & & e^{-2x+4}\\ & & \searrow & \\ - & 2x & & -\frac{1}{2}e^{-2x+4} \\ & & \searrow & \\ + & 2 & & \frac{1}{4}e^{-2x+4} \\ & & \searrow & \\ - & 0 & & -\frac{1}{8}e^{-2x+4} \end{array}\right]$ $\displaystyle \int(x^{2}+1)e^{-2x+4}dx=$ $=(x^{2}+1)(-\displaystyle \frac{1}{2}e^{-2x+4})-2x(\frac{1}{4}e^{-2x+4})+2(-\frac{1}{8}e^{-2x+4})+C$ $=\displaystyle \frac{1}{4}e^{-2x+4}(-2x^{2}-2-2x-1)+C$ = $-\displaystyle \frac{1}{4}e^{-2x+4}(2x^{2}+2x+3)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.