Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 14 - Section 14.1 - Integration by Parts - Exercises - Page 1021: 5

Answer

$\displaystyle \frac{1}{4}e^{2x}(2x^{2}-2x-1)+C$

Work Step by Step

We integrate as follows: $\left[\begin{array}{llll} \hline & D & & I\\ \hline+ & x^{2}-1 & & e^{2x}\\ & & \searrow & \\ - & 2x & & \frac{1}{2}e^{2x} \\ & & \searrow & \\ + & 2 & & \frac{1}{4}e^{2x} \\ & & \searrow & \\ - & 0 & & \frac{1}{8}e^{2x} \end{array}\right]$ $\displaystyle \int(x^{2}-1)e^{2x}dx=$ $=\displaystyle \frac{1}{2}e^{2x}(x^{2}-1)-\frac{1}{4}e^{2x}\cdot 2x+\frac{1}{8}e^{2x}(2)+C$ $=\displaystyle \frac{1}{4}e^{2x}(2x^{2}-2-2x+1)+C$ $=\displaystyle \frac{1}{4}e^{2x}(2x^{2}-2x-1)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.