Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 74

Answer

$\dfrac{\tan x+\tan y}{\cot x+\cot y}=\tan x\tan y$

Work Step by Step

$\dfrac{\tan x+\tan y}{\cot x+\cot y}=\tan x\tan y$ Replace $\tan x$ and $\tan y$ by $\dfrac{\sin x}{\cos x}$ and $\dfrac{\sin y}{\cos y}$, respectively. Also replace $\cot x$ and $\cot y$ by $\dfrac{\cos x}{\sin x}$ and $\dfrac{\cos y}{\sin y}$, respectively. $\dfrac{\dfrac{\sin x}{\cos x}+\dfrac{\sin y}{\cos y}}{\dfrac{\cos x}{\sin x}+\dfrac{\cos y}{\sin y}}=\tan x\tan y$ Evaluate the sums indicated on the left side: $\dfrac{\dfrac{\sin x\cos y+\sin y\cos x}{\cos x\cos y}}{\dfrac{\sin y\cos x+\sin x\cos y}{\sin x\sin y}}=\tan x\tan y$ Evaluate the division and simplify: $\dfrac{(\sin x\cos y+\sin y\cos x)(\sin x\sin y)}{(\sin y\cos x+\sin x\cos y)(\cos x\cos y)}=\tan x\tan y$ $\dfrac{\sin x\sin y}{\cos x\cos y}=\tan x\tan y$ Since $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{\sin y}{\cos y}=\tan y$, the identity is proved. $\tan x\tan y=\tan x\tan y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.