Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 60

Answer

We want to verify that $sec \ t\ csc\ t (tan\ t +cot\ t)=sec^2t+csc^2t$ We start with the right-hand side: $sec \ t\ csc\ t (tan\ t +cot\ t)$ $=\frac{1}{cos\ t}\frac{1}{sin\ t} (\frac{sin\ t}{cos\ t} +\frac{cos\ t}{sin\ t})$ $=\frac{sin\ t}{cos^2\ t\ sin\ t}+\frac{cos\ t}{cos\ t\ sin^2\ t}$ $=\frac{1}{cos^2\ t}+\frac{1}{sin^2\ t}$ $=sec^2t+csc^2t$, which is the left-hand side, thus verifying the identity.

Work Step by Step

We want to verify that $sec \ t\ csc\ t (tan\ t +cot\ t)=sec^2t+csc^2t$ We start with the right-hand side: $sec \ t\ csc\ t (tan\ t +cot\ t)$ $=\frac{1}{cos\ t}\frac{1}{sin\ t} (\frac{sin\ t}{cos\ t} +\frac{cos\ t}{sin\ t})$ $=\frac{sin\ t}{cos^2\ t\ sin\ t}+\frac{cos\ t}{cos\ t\ sin^2\ t}$ $=\frac{1}{cos^2\ t}+\frac{1}{sin^2\ t}$ $=sec^2t+csc^2t$, which is the left-hand side, thus verifying the identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.