Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 11

Answer

$\dfrac{\sec\theta-\cos\theta}{\sin\theta}=\tan\theta$

Work Step by Step

$\dfrac{\sec\theta-\cos\theta}{\sin\theta}$ Substitute $\sec\theta$ with $\dfrac{1}{\cos\theta}$: $\dfrac{\sec\theta-\cos\theta}{\sin\theta}=\dfrac{\dfrac{1}{\cos\theta}-\cos\theta}{\sin\theta}=...$ Evaluate the sum present in the numerator: $...=\dfrac{\dfrac{1-\cos^{2}\theta}{\cos\theta}}{\sin\theta}=\dfrac{1-\cos^{2}\theta}{(\sin\theta)(\cos\theta)}=...$ We know that $\sin^{2}\theta+\cos^{2}\theta=1$, so if we solve for $\sin^{2}\theta$ here, we get the expression present in the numerator. So substituting $1-\cos^{2}\theta$ with $\sin^{2}\theta$, the expression becomes: $...=\dfrac{\sin^{2}\theta}{(\sin\theta)(\cos\theta)}=\dfrac{\sin\theta}{\cos\theta}=\tan\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.