Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 39

Answer

$\tan\theta+\cot\theta=\sec\theta\csc\theta$

Work Step by Step

$\tan\theta+\cot\theta=\sec\theta\csc\theta$ On the left side of the equation, substitute $\tan\theta$ with $\dfrac{\sin\theta}{\cos\theta}$ and $\cot\theta$ with $\dfrac{\cos\theta}{\sin\theta}$: $\dfrac{\sin\theta}{\cos\theta}+\dfrac{\cos\theta}{\sin\theta}=\sec\theta\csc\theta$ Evaluate the sum of fractions: $\dfrac{\sin^{2}\theta+\cos^{2}\theta}{\sin\theta\cos\theta}=\sec\theta\csc\theta$ Since $\sin^{2}\theta+\cos^{2}\theta=1$, the expression on the left becomes: $\dfrac{1}{\sin\theta\cos\theta}=\sec\theta\csc\theta$ The fraction on the left, can be rewritten like this: $\Big(\dfrac{1}{\sin\theta}\Big)\Big(\dfrac{1}{\cos\theta}\Big)=\sec\theta\csc\theta$ Since $\sec\theta=\dfrac{1}{\cos\theta}$ and $\csc\theta=\dfrac{1}{\sin\theta}$, the identity is proved: $\sec\theta\csc\theta=\sec\theta\csc\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.