Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 45

Answer

$(\tan x+\cot x)^{2}=\sec^{2}x+\csc^{2}x$

Work Step by Step

$(\tan x+\cot x)^{2}=\sec^{2}x+\csc^{2}x$ Evaluate the power on the left side of the equation: $\tan^{2}x+2\tan x\cot x+\cot^{2}x=\sec^{2}x+\csc^{2}x$ Substitute $\tan x$ with $\dfrac{\sin x}{\cos x}$ and $\cot x$ with $\dfrac{\cos x}{\sin x}$: $\tan^{2}x+\cot^{2}x+2\Big(\dfrac{\sin x}{\cos x}\Big)\Big(\dfrac{\cos x}{\sin x}\Big)=\sec^{2}x+\csc^{2}x$ $\tan^{2}x+\cot^{2}x+2=\sec^{2}x+\csc^{2}x$ Substitute $\tan^{2}x$ with $\sec^{2}x-1$ and $\cot^{2}x$ with $\csc^{2}x-1$: $\sec^{2}x-1+\csc^{2}x-1+2=\sec^{2}x+\csc^{2}x$ Simplify and finally the identity is proved: $\sec^{2}x+\csc^{2}x=\sec^{2}x+\csc^{2}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.