Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 68

Answer

$\sec^{4}x-\tan^{4}x=\sec^{2}x+\tan^{2}x$

Work Step by Step

$\sec^{4}x-\tan^{4}x=\sec^{2}x+\tan^{2}x$ On the left side of the equation, replace $\sec^{4}x$ by $\dfrac{1}{\cos^{4}x}$ and $\tan^{4}x$ by $\dfrac{\sin^{4}x}{\cos^{4}x}$: $\dfrac{1}{\cos^{4}x}-\dfrac{\sin^{4}x}{\cos^{4}x}=\sec^{2}x+\tan^{2}x$ Evaluate the subtraction on the left side: $\dfrac{1-\sin^{4}x}{\cos^{4}x}=\sec^{2}x+\tan^{2}x$ Factor the numerator on the left: $\dfrac{(1-\sin^{2}x)(1+\sin^{2}x)}{\cos^{4}x}=\sec^{2}x+\tan^{2}x$ Rewrite the left side as $\dfrac{1-\sin^{2}x}{\cos^{2}x}\cdot\dfrac{1+\sin^{2}x}{\cos^{2}x}$: $\dfrac{1-\sin^{2}x}{\cos^{2}x}\cdot\dfrac{1+\sin^{2}x}{\cos^{2}x}=\sec^{2}x+\tan^{2}x$ Since $1-\sin^{2}x=\cos^{2}x$, then $\dfrac{1-\sin^{2}x}{\cos^{2}x}=1$: $(1)\cdot\dfrac{1+\sin^{2}x}{\cos^{2}x}=\sec^{2}x+\tan^{2}x$ $\dfrac{1+\sin^{2}x}{\cos^{2}x}=\sec^{2}x+\tan^{2}x$ Rewrite the left side as $\dfrac{1}{\cos^{2}x}+\dfrac{\sin^{2}x}{\cos^{2}x}$: $\dfrac{1}{\cos^{2}x}+\dfrac{\sin^{2}x}{\cos^{2}x}=\sec^{2}x+\tan^{2}x$ Since $\dfrac{1}{\cos^{2}x}=\sec^{2}x$ and $\dfrac{\sin^{2}x}{\cos^{2}x}=\tan^{2}x$, the identity is proved $\sec^{2}x+\tan^{2}x=\sec^{2}x+\tan^{2}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.