Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 63

Answer

$\dfrac{\sec x+\csc x}{\tan x+\cot x}=\sin x+\cos x$

Work Step by Step

$\dfrac{\sec x+\csc x}{\tan x+\cot x}=\sin x+\cos x$ On the left side of the equation, replace $\sec x$ by $\dfrac{1}{\cos x}$, $\csc x$ by $\dfrac{1}{\sin x}$, $\tan x$ by $\dfrac{\sin x}{\cos x}$ and $\cot x$ by $\dfrac{\cos x}{\sin x}$: $\dfrac{\dfrac{1}{\cos x}+\dfrac{1}{\sin x}}{\dfrac{\sin x}{\cos x}+\dfrac{\cos x}{\sin x}}=\sin x+\cos x$ Evaluate the sums indicated on the left side: $\dfrac{\dfrac{\sin x+\cos x}{\sin x\cos x}}{\dfrac{\sin^{2}x+\cos^{2}x}{\sin x\cos x}}=\sin x+\cos x$ Evaluate the division on the left side: $\dfrac{\sin x+\cos x}{\sin^{2}x+\cos^{2}x}=\sin x+\cos x$ Since $\sin^{2}x+\cos^{2}x=1$, the identity is proved: $\sin x+\cos x=\sin x+\cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.