Answer
See below
Work Step by Step
Prove that $\frac{1 + \sec^2 x}{1 + tan^2 x} = 1 + cos^2 x$
$1 + tan^2 x = sec^2 x $
Thus substitute $sec^2 x$ for $1 + tan^2 x$
$\frac{1 + sec^2 x}{sec^2 x} = 1 + cos^2 x$
$\frac{1}{sec^2 x} = cos^2 x$
Substitute $cos^2 x$ for $\frac{1}{sec^2 x}$
$1 + cos^2 x $ = $1 + cos^2 x$
Hence proved