Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 26

Answer

$\dfrac{\cot A-1}{1+\tan(-A)}=\cot A$

Work Step by Step

$\dfrac{\cot A-1}{1+\tan(-A)}$ Rewrite $\tan(-A)$ as $-\tan A$: $\dfrac{\cot A-1}{1+\tan(-A)}=\dfrac{\cot A-1}{1-\tan A}=...$ Substitute $\cot A$ with $\dfrac{\cos A}{\sin A}$ and $\tan A$ with $\dfrac{\sin A}{\cos A}$: $...=\dfrac{\dfrac{\cos A}{\sin A}-1}{1-\dfrac{\sin A}{\cos A}}=...$ Evaluate the substractions indicated in the numerator and in the denominator: $...=\dfrac{\dfrac{\cos A-\sin A}{\sin A}}{\dfrac{\cos A-\sin A}{\cos A}}=...$ Evaluate the division and simplify: $...=\dfrac{\cos A(\cos A-\sin A)}{\sin A(\cos A-\sin A)}=\dfrac{\cos A}{\sin A}=\cot A$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.