Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 65

Answer

$\dfrac{1-\cos x}{\sin x}+\dfrac{\sin x}{1-\cos x}=2\csc x$

Work Step by Step

$\dfrac{1-\cos x}{\sin x}+\dfrac{\sin x}{1-\cos x}=2\csc x$ Evaluate the sum on the left side of the equation: $\dfrac{(1-\cos x)^{2}+\sin^{2}x}{(1-\cos x)\sin x}=2\csc x$ $\dfrac{1-2\cos x+\cos^{2}x+\sin^{2}x}{\sin x-\sin x\cos x}=2\csc x$ Replace $\cos^{2}x+\sin^{2}x$ by $1$ and simplify the numerator: $\dfrac{1-2\cos x+1}{\sin x-\sin x\cos x}=2\csc x$ $\dfrac{2-2\cos x}{\sin x-\sin x\cos x}=2\csc x$ Take out common factor $2$ from the numerator and common factor $\sin x$ from the denominator and simplify: $\dfrac{2(1-\cos x)}{\sin x(1-\cos x)}=2\csc x$ $\dfrac{2}{\sin x}=2\csc x$ Since $\dfrac{2}{\sin x}=2\cdot\dfrac{1}{\sin x}=2\csc x$, the identity is proved: $2\csc x=2\csc x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.