Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 25

Answer

$1 - \sin x $

Work Step by Step

Given expression is- $ \frac{\cos x}{\sec x + \tan x} $ = $ \frac{\cos x}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} $ (Writing in terms of sin and cos) = $ \frac{\cos x}{\frac{1 + \sin x}{\cos x} } $ = $ \cos x . \frac {\cos x}{1 + \sin x } $ = $ \frac {\cos^{2} x}{1 + \sin x } $ = $ \frac {1 - \sin^{2} x}{1 + \sin x } $ ( From first Pythagorean identity, $\cos^{2} x$ = $1 - \sin^{2} x$) = $ \frac {(1 - \sin x) (1 + \sin x)}{1 + \sin x } $ {Recall $a^{2} - b^{2}$ = (a-b)(a+b)} = $1 - \sin x $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.