Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 73

Answer

$\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x$

Work Step by Step

$\dfrac{1+\sin x}{1-\sin x}-\dfrac{1-\sin x}{1+\sin x}=4\tan x\sec x$ Evaluate the subtraction on the left side and simplify: $\dfrac{(1+\sin x)^{2}-(1-\sin x)^{2}}{(1-\sin x)(1+\sin x)}=4\tan x\sec x$ $\dfrac{(1+2\sin x+\sin^{2}x)-(1-2\sin x+\sin^{2}x)}{1-\sin^{2}x}=4\tan x\sec x$ $\dfrac{1+2\sin x+\sin^{2}x-1+2\sin x-\sin^{2}x}{1-\sin^{2}x}=4\tan x\sec x$ $\dfrac{4\sin x}{1-\sin^{2}x}=4\tan x\sec x$ Replace $1-\sin^{2}x$ by $\cos^{2}x$: $\dfrac{4\sin x}{\cos^{2}x}=4\tan x\sec x$ Rewrite the left side as $4\cdot\dfrac{\sin x}{\cos x}\cdot\dfrac{1}{\cos x}$: $4\cdot\dfrac{\sin x}{\cos x}\cdot\dfrac{1}{\cos x}=4\tan x\sec x$ Since $\dfrac{\sin x}{\cos x}=\tan x$ and $\dfrac{1}{\cos x}=\sec x$, the identity is proved. $4\tan x\sec x=4\tan x\sec x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.