Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 50

Answer

$\cot^{2}t-\cos^{2}t=\cot^{2}t\cos^{2}t$

Work Step by Step

$\cot^{2}t-\cos^{2}t=\cot^{2}t\cos^{2}t$ Substitute $\cot^{2}t$ with $\dfrac{\cos^{2}t}{\sin^{2}t}$: $\dfrac{\cos^{2}t}{\sin^{2}t}-\cos^{2}t=\cot^{2}t\cos^{2}t$ Take out common factor $\cos^{2}t$: $\cos^{2}t\Big(\dfrac{1}{\sin^{2}t}-1\Big)=\cot^{2}t\cos^{2}t$ Evaluate $\dfrac{1}{\sin^{2}t}-1$: $\cos^{2}t\Big(\dfrac{1-\sin^{2}t}{\sin^{2}t}\Big)=\cot^{2}t\cos^{2}t$ Since $1-\sin^{2}t=\cos^{2}t$, the identity is proved: $\Big(\dfrac{\cos^{2}t}{\sin^{2}t}\Big)\cos^{2}t=\cot^{2}t\cos^{2}t$ $\cot^{2}t\cos^{2}t=\cot^{2}t\cos^{2}t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.