Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 543: 38

Answer

$\cot(-\alpha)\cos(-\alpha)+\sin(-\alpha)=-\csc\alpha$

Work Step by Step

$\cot(-\alpha)\cos(-\alpha)+\sin(-\alpha)=-\csc\alpha$ On the left side of the equation, substitute $\cot(-\alpha)$ with $\dfrac{\cos(-\alpha)}{\sin(-\alpha)}$: $\Big[\dfrac{\cos(-\alpha)}{\sin(-\alpha)}\Big]\cos(-\alpha)+\sin(-\alpha)=-\csc\alpha$ Since cosine is an even function, substitute $\cos(-\alpha)$ with $\cos(\alpha)$. Also, sine is an odd function, so substitute $\sin(-\alpha)$ with $-\sin(\alpha)$: $\Big[\dfrac{\cos(\alpha)}{-\sin(\alpha)}\Big]\cos(\alpha)-\sin(\alpha)=-\csc\alpha$ $-\dfrac{\cos(\alpha)}{\sin(\alpha)}\cos(\alpha)-\sin(\alpha)=-\csc\alpha$ On the left side, factor out the minus sign and evaluate the sum of fractions and simplify: $-\Big(\dfrac{\cos^{2}\alpha}{\sin\alpha}+\sin\alpha\Big)=-\csc\alpha$ $-\Big(\dfrac{\cos^{2}\alpha+\sin^{2}\alpha}{\sin\alpha}\Big)=-\csc\alpha$ Since $\cos^{2}\alpha+\sin^{2}=1$, the left side becomes: $-\Big(\dfrac{1}{\sin\alpha}\Big)=-\csc\alpha$ The identity is proved, since $\dfrac{1}{\sin\alpha}=\csc\alpha$: $-\csc\alpha=-\csc\alpha$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.