Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.10 nth Roots; Rational Exponents - A.10 Assess Your Understanding - Page A88: 45

Answer

$(2x-15)\sqrt{2x}$.

Work Step by Step

Simplify each radical by factoring the radicand such that one of the factors is a perfect square: $\sqrt{8x^3}-3\sqrt{50x}\\ =\sqrt{4x^2\cdot 2x}-3\sqrt{25\cdot 2x}\\ =\sqrt{(2x)^2\cdot 2x}-3\sqrt{5^2\cdot 2x}$ Use the rule $\sqrt{a\cdot b}=\sqrt{a} \cdot \sqrt{b}$ then simplify: $=\sqrt{(2x)^2}\cdot \sqrt{2x}-3\cdot\sqrt{5^2}\cdot \sqrt{2x}$ $=2x\cdot \sqrt{2x}-3\cdot5\cdot \sqrt{2x}$ $=2x\sqrt{2x}-15\sqrt{2x}$ Factor out $\sqrt{2x}$. $=\sqrt{2x}(2x-15)$ $=(2x-15)\sqrt{2x}$ Hence, the correct answer is $(2x-15)\sqrt{2x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.