College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 1, Equations and Graphs - Section 1.4 - Solving Quadratic Equations - 1.4 Exercises - Page 123: 55

Answer

$s=\frac{2c-b-a\pm\sqrt{a^2+b^2+4c^2-2ab}}{2}$

Work Step by Step

$\frac{1}{s+a}+\frac{1}{s+b}=\frac{1}{c}$ (Multiply by $c(s+a)(s+b)$) $c(s+b)+c(s+a)=(s+a)(s+b)$ (Simplify) $2cs+(ac+bc)=s^2+(a+b)s+ab$ $s^2+(a+b-2c)s+(ab-ac-bc)=0$ Find the discriminant of the last equation: $D=(a+b-2c)^2-4\cdot 1\cdot (ab-ac-bc)$ $D=a^2+b^2+4c^2+2ab-4ac-4bc-4ab+4ac+4bc$ $D=a^2+b^2+4c^2-2ab$ Using the quadratic formula, $s=\frac{-(a+b-2c)\pm \sqrt{D}}{2\cdot 1}$ $s=\frac{2c-b-a\pm\sqrt{a^2+b^2+4c^2-2ab}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.