#### Answer

a. 13 + 12
Multiply so the fractions have a common denominator.
13 × 22 = 26
12 × 33 = 36
Perform addition.
26 + 36 = 56
b. 2−23+14
Multiply so all terms have a common denominator.
21×1212=2412
23×44=812
14×33=312
Subtract then add.
2412−812+312=1912
c. 4(2−23)
Multiply so the numbers in the parenthesis have a common denominator.
21×33=63
Perform the operation in the parenthesis.
63−23=43
Multiply.
4(43)=163
d. 1243+16
Multiply so the fractions in the denominator have a common denominator.
43×22=86
Add the fractions in the denominator.
86+16=96
Multiply the numerator by the inverse of the denominator.
12×69=8

#### Work Step by Step

a. $\frac{1}{3}$ + $\frac{1}{2}$
Multiply so the fractions have a common denominator.
$\frac{1}{3}$ $\times$ $\frac{2}{2}$ = $\frac{2}{6}$
$\frac{1}{2}$ $\times$ $\frac{3}{3}$ = $\frac{3}{6}$
Perform addition.
$\frac{2}{6}$ + $\frac{3}{6}$ = $\frac{5}{6}$
b. $2 - \frac{2}{3} + \frac{1}{4}$
Multiply so all terms have a common denominator.
$\frac{2}{1} \times \frac{12}{12} = \frac{24}{12}$
$\frac{2}{3} \times \frac{4}{4} = \frac{8}{12}$
$\frac{1}{4} \times \frac{3}{3} = \frac{3}{12}$
Subtract then add.
$\frac{24}{12} - \frac{8}{12} + \frac{3}{12} = \frac{19}{12}$
c. $4(2- \frac{2}{3})$
Multiply so the numbers in the parenthesis have a common denominator.
$\frac{2}{1} \times \frac{3}{3} = \frac{6}{3}$
Perform the operation in the parenthesis.
$\frac{6}{3} - \frac{2}{3} = \frac{4}{3}$
Multiply.
$4(\frac{4}{3}) = \frac{16}{3}$
d. $\frac{12}{\frac{4}{3} + \frac{1}{6}}$
Multiply so the fractions in the denominator have a common denominator.
$\frac{4}{3} \times \frac{2}{2} = \frac{8}{6}$
Add the fractions in the denominator.
$\frac{8}{6} + \frac{1}{6} = \frac{9}{6}$
Multiply the numerator by the inverse of the denominator.
$12 \times \frac{6}{9} = 8$