Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 64

Answer

$\{-1,15\}$

Work Step by Step

Taking the positive: $$x-15=x^2-15x$$ $$0=x^2-16x+15$$ $$x^2-16x+15=0$$ $$(x-15)(x-1)=0$$ $$x-15=0$$ $$x=15$$ $$x-1=0$$ $$x=1$$ Checking: For $x=15$: $$|15-15|=(15)^2-15(15)$$ $$0=0~True$$ Thus, $x=15$ is a solution. For $x=1$: $$|1-15|=1^2-15(1)$$ $$14=-14~False$$ Thus, $x=1$ is not a solution. Taking the negative: $$x-15=-(x^2-15x)$$ $$x-15=-x^2+15x$$ $$x^2-14x-15=0$$ $$(x-15)(x+1)=0$$ $$x-15=0$$ $$x=15$$ $$x+1=0$$ $$x=-1$$ Checking for $x=-1$: $$|-1-15|=(-1)^2-15(-1)$$ $$16=16~True$$ Thus, $x=-1$ is a solution. Therefore, the solution set is: $$\{-1,15\}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.