Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 22

Answer

$\bigg\{ -\sqrt[3]2,-1, \frac{\sqrt[3]2\pm i\sqrt{3\sqrt[3]4}}{2}, \frac{1\pm i\sqrt 3}{2}\bigg\}$

Work Step by Step

$x^6+3x^3+2=0$ Let $x^3=a$ $a^2+3a+2=0,$ $a^2+a+2a+2=0,$ $a(a+1)+2(a+1)=0,$ $(a+2)(a+1)=0,$ Substituting $x^3=a$ $(x^3+2)(x^3+1)=0$ $(x+\sqrt[3]2)(x^2-\sqrt[3]2x+\sqrt[3]4)(x+1)(x^2-x+1)=0$ The solutions are: $x_1=-\sqrt[3]2$ $x_2=-1$ $x_{3,4}=\frac{\sqrt[3]2\pm i\sqrt{3\sqrt[3]4}}{2}$ $x_{5,6}=\frac{1\pm i\sqrt 3}{2}$ Thus the solution set is: $\bigg\{ -\sqrt[3]2,-1, \frac{\sqrt[3]2\pm i\sqrt{3\sqrt[3]4}}{2}, \frac{1\pm i\sqrt 3}{2}\bigg\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.