Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 63

Answer

$\bigg\{\frac{-1-\sqrt{17}}{2},3\bigg\}$

Work Step by Step

Taking the positive: $$x+1=x^2-5$$ $$0=x^2-x-6$$ $$(x-3)(x+2)=0$$ $$x-3=0$$ $$x=3$$ $$x+2=0$$ $$x=-2$$ Checking: For $x=3$: $$|3+1|=3^2-5$$ $$4=4~True$$ Thus, $x=3$ is a solution. For $x=-2$: $$|-2+1|=(-2)^2-5$$ $$1=-1~False$$ Thus, $x=-2$ is not a solution. Taking the negative: $$x+1=-(x^2-5)$$ $$x+1=-x^2+5$$ $$x^2+x-4=0$$ Using the quadratic formula: $$x=\frac{-1\pm\sqrt{(-1)^2-4(1)(-4)}}{2(1)}=\frac{-1\pm\sqrt{17}}{2}$$ $$x_1=\frac{-1+\sqrt{17}}{2}$$ $$x_2=\frac{-1-\sqrt{17}}{2}$$ Checking: For $x=\frac{-1+\sqrt{17}}{2}$: $$|\frac{-1+\sqrt{17}}{2}+1|=\left(\frac{-1+\sqrt{17}}{2}\right)^2-5$$ $$\frac{-1+\sqrt{17}}{2}+1=\frac{9-\sqrt{17}}{2}-5~False$$ Thus, $x=\frac{-1+\sqrt{17}}{2}$ is not a solution. For $x=\frac{-1-\sqrt{17}}{2}$: $$|\frac{-1-\sqrt{17}}{2}+1|=\left(\frac{-1-\sqrt{17}}{2}\right)^2-5$$ $$-\frac{-1-\sqrt{17}}{2}-1=\frac{9-\sqrt{17}}{2}-5~True$$ Thus, $x=\frac{-1-\sqrt{17}}{2}$ is a solution. Therefore, the solution set is: $$\bigg\{\frac{-1-\sqrt{17}}{2},3\bigg\}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.