Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 43

Answer

$x=\frac{7}{4}$

Work Step by Step

$\sqrt{4\sqrt{4x+9}}=\sqrt{8x+2}$ Squaring both sides of the equation... $4\sqrt{4x+9}=8x+2$ Squaring both sides again... $16(4x+9)=64x^2+32x+4$ $64x+144=64x^2+32x+4$ Substracting $64x+144$ from both sides $64x^2-32x-140=0$ Dividing both sides of an equation by 4 $16x^2-8x-35=0$ Solving for the quadratic equation using quadratic formula... $x=\frac{8\pm \sqrt{(8)^2+4(16)(35)}}{2\times16}=\frac{8\pm48}{32}$ $=\frac{7}{4}$ or $x=-\frac{5}{4}$ We check the solutions: $\sqrt{4\sqrt{4\cdot\frac{7}{4}+9}}=\sqrt{16}=4$ $\sqrt{8\cdot\frac{7}{4}+2}=\sqrt{16}=4$ $4=4\checkmark$ $\sqrt{4\sqrt{4\cdot\left(-\frac{5}{4}\right)+9}}=\sqrt{8}=2\sqrt 2$ $\sqrt{8\cdot\left(-\frac{5}{4}\right)+2}=\sqrt{-8}=2i\sqrt 2$ $2\sqrt 2\not=2i\sqrt 2$ The only solution is $x=\frac{7}{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.