Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 62

Answer

$\{-6,-3,3\}$

Work Step by Step

Taking the positive: $$x^2+6x=3x+18$$ $$x^2+3x-18=0$$ $$(x+6)(x-3)=0$$ $$x+6=0$$ $$x=-6$$ $$x-3=0$$ $$x=3$$ Checking: For $x=-6$: $$|(-6)^2+6(-6)|=3(-6)+18$$ $$0=0~True$$ Thus, $x=-6$ is a solution. For $x=3$: $$|(3^2+6(3)|=3(3)+18$$ $$27=27~True$$ Thus, $x=3$ is a solution. Taking the negative: $$x^2+6x=-(3x+18)$$ $$x^2+6x=-3x-18$$ $$x^2+9x+18=0$$ $$(x+6)(x+3)=0$$ $$x+6=0$$ $$x=-6$$ $$x+3=0$$ $$x=-3$$ Checking for $x=-3$: $$|((-3)^2+6(-3)|=3(-3)+18$$ $$9=9~True$$ Thus, $x=-3$ is a solution. Therefore, the solution is: $$x=-6,-3,3$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.