Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 1 - 1.6 - Other Types of Equations - 1.6 Exercises - Page 128: 61

Answer

$\{-6,2\sqrt6\}$

Work Step by Step

Taking the positive ($x\geq 0$): $$x=x^2+x-24$$ $$x^2=24$$ $$x=\pm \sqrt{24}=\pm \sqrt{4\cdot6}=\pm 2\sqrt6$$ But $x\geq 0$, so the solution is $x=2\sqrt 6$. Checking: $$|2\sqrt{6}|=(2\sqrt6)^2+2\sqrt6-24$$ $$2\sqrt6=2\sqrt6~~True$$ Thus, $x=2\sqrt6$ is a solution. Taking the negative ($x<0$): $$x=-(x^2+x-24)$$ $$x=-x^2-x+24$$ $$2x=-x^2+24$$ $$x^2+2x-24=0$$ $$(x+6)(x-4)=0$$ $$x+6=0$$ $$x=-6$$ $$x-4=0$$ $$x=4$$ But $x<0$, so only $x=-6$ fits. Checking: $$|-6|=(-6)^2+(-6)-24$$ $$6=6~True$$ Thus, $x=-6$ is a solution. Therefore, the solution set is: $$\{-6,2\sqrt6\}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.