Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 86

Answer

a) $\frac{5m^4-44m^3-3m^2+308m-224}{m^2-7}=5m^2-44m+32$ b) $ (m^2-7)\cdot(m-8)\cdot(5m-4)$

Work Step by Step

Given \begin{equation} \left(5m^4-44m^3-3m^2+308m-224\right) \div\left(m^2-7\right). \end{equation} a) Use long division. $$ \begin{array}{r} 5m^2-44m+32\phantom{)} \\ m^2-7{\overline{\smash{\big)}\,5m^4-44m^3-3m^2+308m-224\phantom{)}}}\\ \underline{-~\phantom{(}(5m^4-35m^2)\phantom{-b)}}\\ 0-44m^3+32m^2+308m\phantom{)}\\ \underline{-~\phantom{()}(-44m^3+308m)}\\ 0+32m^2-224\phantom{)}\\ \underline{-~\phantom{()}(32m^2-224)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{5m^4-44m^3-3m^2+308m-224}{m^2-7}=5m^2-44m+32. \end{equation} b) Factor the quadratic $5m^2-44m+32$. \begin{equation} \begin{aligned} 5m^2-44m+32&=5m^2-40m-4m+32 \\ &=5m(m-8)-4(m-8)\\ &= (m-8)(5m-4). \end{aligned} \end{equation} The prime factor decomposition is $$ (m^2-7)\cdot(m-8)\cdot(5m-4).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.