Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 71

Answer

$a^2+2a+3$

Work Step by Step

Given \begin{equation} \left(a^4+2a^3+8 a^2+10a+15\right) \div\left(a^2+5\right). \end{equation} Use long division. $$ \begin{array}{r} a^2+2a+3\phantom{)} \\ a^2+5{\overline{\smash{\big)}\,a^4+2a^3+8 a^2+10a+15\phantom{)}}}\\ \underline{-~\phantom{(}(a^4+5a^2)\phantom{-b)}}\\ 0+2a^3+3a^2+10a\phantom{)}\\ \underline{-~\phantom{()}(2a^3+10a)}\\ 0+3a^2+15\phantom{)}\\ \underline{-~\phantom{()}(3a^2+15)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{a^4+2a^3+8 a^2+10a+15}{a^2+5}= a^2+2a+3. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.