Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 85

Answer

a) $\frac{3t^4-17t^3+47t^2-153t+180}{t^2+9}= 3t^2-17t+20$ b) $ (t^2+9)\cdot (t-4)\cdot(3t-5)$

Work Step by Step

Given \begin{equation} \left(3t^4-17t^3+47t^2-153t+180\right) \div\left(t^2+9\right). \end{equation} a) Use long division. $$ \begin{array}{r} 3t^2-17t+20\phantom{)} \\ t^2+9{\overline{\smash{\big)}\,3t^4-17t^3+47t^2-153t+180\phantom{)}}}\\ \underline{-~\phantom{(}(3t^4+27t^2)\phantom{-b)}}\\ 0-17t^3+20t^2-153t\phantom{)}\\ \underline{-~\phantom{()}(-17t^3-153t)}\\ 0+20t^2+180\phantom{)}\\ \underline{-~\phantom{()}(20t^2+180)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{3t^4-17t^3+47t^2-153t+180}{t^2+9}= 3t^2-17t+20. \end{equation} b) Factor the quadratic $3t^2-17t+20$. \begin{equation} \begin{aligned} 3t^2-17t+20&=3t^2-12t-5t+20 \\ &=3t(t-4)-5(t-4)\\ &= (t-4)(3t-5). \end{aligned} \end{equation} The prime factor decomposition is $$ (t^2+9)\cdot (t-4)\cdot(3t-5).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.