Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 49

Answer

$4b^2-3b+5$

Work Step by Step

Given \begin{equation} \left(4 b^4-3 b^3-23 b^2+21 b-35\right) \div\left(b^2-7\right) \end{equation} Use long division. $$ \begin{array}{r} 4b^2-3b+5\phantom{)} \\ b^2-7{\overline{\smash{\big)}\,4 b^4-3 b^3-23 b^2+21 b-35\phantom{)}}}\\ \underline{-~\phantom{(}(4b^4-28b^2)\phantom{-b)}}\\ 0-3 b^3+5b^2+21b\phantom{)}\\ \underline{-~\phantom{()}(-3b^3+21b)}\\ 0+5b^2-35\phantom{)}\\ \underline{-~\phantom{()}(5b^2-35)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{4b^4-3 b^3-23b^2+21b-35}{b^2-7}=4b^2-3b+5 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.