Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 50

Answer

$3x^2+2x+4$

Work Step by Step

Given \begin{equation} \left(3 x^4+2 x^3+22 x^2+12 x+24\right) \div\left(x^2+6\right) \end{equation} Use long division. $$ \begin{array}{r} 3x^2+2x+4\phantom{)} \\ x^2+6{\overline{\smash{\big)}\,3 x^4+2 x^3+22 x^2+12 x+24\phantom{)}}}\\ \underline{-~\phantom{(}(3x^4+18x^2)\phantom{-b)}}\\ 0+2x^3+4x^2+12x\phantom{)}\\ \underline{-~\phantom{()}(2x^3+12x)}\\ 0+4x^2+24\phantom{)}\\ \underline{-~\phantom{()}(4x^2+24)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{3 x^4+2 x^3+22 x^2+12 x+24}{x^2+6}=3x^2+2x+4 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.