Section Navigation

Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 68

Answer

$x^2-7x+5$

Work Step by Step

Given \begin{equation} \left(x^4-7 x^3+10 x^2-35 x+25\right) \div\left(x^2+5\right). \end{equation} Use long division. $$ \begin{array}{r} x^2-7x+5\phantom{)} \\ x^2+5{\overline{\smash{\big)}\,x^4-7x^3+10x^2-35x+25\phantom{)}}}\\ \underline{-~\phantom{(}(x^4+5x^2)\phantom{-b)}}\\ 0-7x^3+5x^2-35x\phantom{)}\\ \underline{-~\phantom{()}(-7x^3-35x)}\\ 0+5x^2+25\phantom{)}\\ \underline{-~\phantom{()}(5x^2+25)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{x^4-7 x^3+10 x^2-35 x+25}{x^2+5}= x^2-7x+5. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.