Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 84

Answer

a) $\frac{8 x^3-86 x^2+237 x-189}{x-7}=8x^2-30x+27$ b) $ (x-7)\cdot (2x-3)\cdot(4x-9)$

Work Step by Step

Given \begin{equation} \begin{aligned} \left(8 x^3-86 x^2+237 x-189\right) \div(x-7). \end{aligned} \end{equation} a) Use synthetic division. \begin{equation} \begin{array}{r|rrrr} 7&8 & -86 & 237& -189\\ & & 56 & -210& 189\\ \hline &8& -30 & 27 & 0 \end{array} \end{equation} The solution is \begin{equation} \begin{aligned} \frac{8 x^3-86 x^2+237 x-189}{x-7}=8x^2-30x+27. \end{aligned} \end{equation} b) Factor the quadratic $8x^2-30x+27$. \begin{equation} \begin{aligned} 8x^2-30x+27&=8x^2-18x-12x+27 \\ &=2x(4x-9)-3(4x-9)\\ &= (2x-3)(4x-9). \end{aligned} \end{equation} The prime factor decomposition is $$ (x-7)\cdot (2x-3)\cdot(4x-9).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.