Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 65

Answer

$x^2+2x+5$

Work Step by Step

Given \begin{equation} \left(x^4+2 x^3-10 x-25\right) \div\left(x^2-5\right) \end{equation} Use long division. $$ \begin{array}{r} x^2+2x+5\phantom{)} \\ x^2-5{\overline{\smash{\big)}\,x^4+2 x^3+0x^2-10 x-25\phantom{)}}}\\ \underline{-~\phantom{(}(x^4-5x^2)\phantom{-b)}}\\ 0+2 x^3+5x^2-10x\phantom{)}\\ \underline{-~\phantom{()}(2x^3-10x)}\\ 0+5x^2-25\phantom{)}\\ \underline{-~\phantom{()}(5x^2-25)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{x^4+2 x^3-10 x-25}{x^2-5}=x^2+2x+5 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.