Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 61

Answer

$6x+7$

Work Step by Step

Given \begin{equation} \left(12 x^2+32 x+21\right) \div(2 x+3) \end{equation} Use long division. $$ \begin{array}{r} 6x+7\phantom{)} \\ 2 x+3{\overline{\smash{\big)}\,12 x^2+32 x+21\phantom{)}}}\\ \underline{-~\phantom{(}(12x^2+18x)\phantom{-b)}}\\ 0+14x+21\phantom{)}\\ \underline{-~\phantom{()}(14x+21)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{12 x^2+32 x+21}{2 x+3}=6x+7 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.