Answer
$6x+7$
Work Step by Step
Given \begin{equation}
\left(12 x^2+32 x+21\right) \div(2 x+3)
\end{equation} Use long division. $$
\begin{array}{r}
6x+7\phantom{)} \\
2 x+3{\overline{\smash{\big)}\,12 x^2+32 x+21\phantom{)}}}\\
\underline{-~\phantom{(}(12x^2+18x)\phantom{-b)}}\\
0+14x+21\phantom{)}\\
\underline{-~\phantom{()}(14x+21)}\\
0\phantom{)}
\end{array}
$$ The solution is \begin{equation}
\frac{12 x^2+32 x+21}{2 x+3}=6x+7
\end{equation}