Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 83

Answer

a) $\frac{2 x^3+x^2-63 x-90}{x+5}=2x^2-9x-18$ b) $ (x+5)\cdot (x-6)\cdot(2x+3)$

Work Step by Step

Given \begin{equation} \begin{aligned} \left(2 x^3+x^2-63 x-90\right) \div(x+5). \end{aligned} \end{equation} Use synthetic division. \begin{equation} \begin{array}{r|rrrr} -5&2 & 1 & -63& -90\\ & & -10 & 45& 90\\ \hline &2& -9 & -18 & 0 \end{array} \end{equation} a) The solution is \begin{equation} \begin{aligned} \frac{2 x^3+x^2-63 x-90}{x+5}=2x^2-9x-18. \end{aligned} \end{equation} b) Factor the quadratic $2x^2-9x-18$. \begin{equation} \begin{aligned} 2x^2-9x-18&=2x^2+3x-12x-18 \\ &=x(2x+3)-6(2x+3)\\ &= (x-6)(2x+3). \end{aligned} \end{equation} The prime factor decomposition is $$ (x+5)\cdot (x-6)\cdot(2x+3).$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.