Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 67

Answer

$x^2-3x+4$

Work Step by Step

Given \begin{equation} \left(x^4-3 x^3+8 x^2-12 x+16\right) \div\left(x^2+4\right). \end{equation} Use long division. $$ \begin{array}{r} x^2-3x+4\phantom{)} \\ x^2+4{\overline{\smash{\big)}\,x^4-3 x^3+8 x^2-12 x+16\phantom{)}}}\\ \underline{-~\phantom{(}(x^4+4x^2)\phantom{-b)}}\\ 0-3x^3+4x^2-12x\phantom{)}\\ \underline{-~\phantom{()}(-3x^3-12x)}\\ 0+4x^2+16\phantom{)}\\ \underline{-~\phantom{()}(4x^2+16)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{x^4-3 x^3+8 x^2-12 x+16}{x^2+4}= x^2-3x+4. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.