Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 72

Answer

$w^2-5w+7$

Work Step by Step

Given \begin{equation} \left(w^4-5w^3+w^2+30w-42\right) \div\left(w^2-6\right). \end{equation} Use long division. $$ \begin{array}{r} w^2-5w+7\phantom{)} \\ w^2-6{\overline{\smash{\big)}\,w^4-5w^3+w^2+30w-42\phantom{)}}}\\ \underline{-~\phantom{(}(w^4-6w^2)\phantom{-b)}}\\ 0-5w^3+7w^2+30w\phantom{)}\\ \underline{-~\phantom{()}(-5w^3+30w)}\\ 0+7w^2-42\phantom{)}\\ \underline{-~\phantom{()}(7w^2-42)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{w^4-5w^3+w^2+30w-42}{w^2-6}= w^2-5w+7. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.