Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 52

Answer

$4a^2-3a+7$

Work Step by Step

Given \begin{equation} \left(4a^4-11a^3+29a^2-26a+28\right) \div\left(a^2-2a+4\right) \end{equation} Use long division. $$ \begin{array}{r} 4a^2-3a+7\phantom{)} \\ a^2-2a+4{\overline{\smash{\big)}\,4a^4-11a^3+29a^2-26a+28\phantom{)}}}\\ \underline{-~\phantom{(}(4a^4-8a^3+16a^2)\phantom{-b)}}\\ 0-3a^3+13a^2-26a\phantom{)}\\ \underline{-~\phantom{()}(-3a^3+6a^2-12a)}\\ 0+7a^2-14a+28\phantom{)}\\ \underline{-~\phantom{()}(7a^2-14a+28)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{4a^4-11a^3+29a^2-26a+28}{a^2-2a+4}=4a^2-3a+7 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.