Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 51

Answer

$5n^2+4n-8$

Work Step by Step

Given \begin{equation} \left(5 n^4+19 n^3+14 n^2-16 n-16\right) \div\left(n^2+3n+2\right) \end{equation} Use long division. $$ \begin{array}{r} 5n^2+4n-8\phantom{)} \\ n^2+3n+2{\overline{\smash{\big)}\,5n^4+19n^3+14n^2-16n-16\phantom{)}}}\\ \underline{-~\phantom{(}(5n^4+15n^3+10n^2)\phantom{-b)}}\\ 0+4n^3+4n^2-16n\phantom{)}\\ \underline{-~\phantom{()}(4n^3+12n^2+8n)}\\ 0-8n^2-24n-16\phantom{)}\\ \underline{-~\phantom{()}(-8n^2-24n-16)}\\ 0\phantom{)} \end{array} $$The solution is \begin{equation} \frac{5n^4+19n^3+14n^2-16n-16}{n^2+3n+2}=5n^2+4n-8 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.