Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 7 - Rational Functions - 7.2 Simplifying Rational Expressions - 7.2 Exercises - Page 576: 45

Answer

$x^2+5x-4$

Work Step by Step

Given \begin{equation} \left(x^3+7 x^2+6 x-8\right) \div(x+2). \end{equation} Use long division. $$ \begin{array}{r} x^2+5x-4\phantom{)} \\ x+2{\overline{\smash{\big)}\,x^3+7 x^2+6 x-8\phantom{)}}}\\ \underline{-~\phantom{(}(x^3+2x^2)\phantom{-b)}}\\ 0+5x^2+6x\phantom{)}\\ \underline{-~\phantom{()}(5x+10x)}\\ -4x-8\phantom{)}\\ \underline{-~\phantom{()}(-4x-8)}\\ 0\phantom{)} \end{array} $$ The solution is \begin{equation} \frac{x^3+7 x^2+6 x-8}{x+2}=x^2+5x-4 \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.