Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.3 - Geometric Sequences - 12.3 Exercises - Page 865: 58

Answer

$11,999.99988$

Work Step by Step

See p. 861. For the geometric sequence $a_{n}=ar^{n-1}$ the nth partial sum$ S_{n}=\displaystyle \sum_{k=1}^{n}ar^{k-1}$ (where $r\neq 1$) is given by$ \displaystyle \quad S_{n}=a\cdot\frac{1-r^{n}}{1-r}$ --------------- We see that $a=10,800,\displaystyle \quad r=\frac{1}{10}=10^{-1}$ So, $a_{n}=ar^{n-1} =10,800(\displaystyle \frac{1}{10})^{n-1}$ Given the last term, we find n: $0.000108=10800(\displaystyle \frac{1}{10})^{n-1}\qquad/\div(10800)$ $10^{-8}=(10^{-1})^{n-1}$ $(10^{-1})^{8}=(10^{-1})^{n-1}$ $n-1=8$ $n=9$ So $S_{8}=10,800\displaystyle \cdot\frac{1-(10^{-1})^{9}}{1-\frac{1}{10}}=11,999.99988$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.