Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.3 - Geometric Sequences - 12.3 Exercises - Page 865: 54

Answer

$\displaystyle \frac{341}{512}$

Work Step by Step

See p. 861. For the geometric sequence $a_{n}=ar^{n-1}$ the nth partial sum$ S_{n}=\displaystyle \sum_{k=1}^{n}ar^{k-1}$ (where $r\neq 1$) is given by$ \displaystyle \quad S_{n}=a\cdot\frac{1-r^{n}}{1-r}$ --------------- We see that $a=1,\displaystyle \quad r=-\frac{1}{2}.$ So, $a_{n}=ar^{n-1} =(-\displaystyle \frac{1}{2})^{n-1}$ Given the last term, we find n: $512=(-\displaystyle \frac{1}{2})^{n-1}$ ... recognizing 512 as a power of 2, .... or factoring, 512=2(256)=$2^{2}(128)...=2^{9}$ $(-\displaystyle \frac{1}{2})^{n-1}=(-\frac{1}{2})^{9}$ $n-1=9$ $n=10$ So, $S_{10}=(1)\displaystyle \frac{1-(-\frac{1}{2})^{10}}{1-(-\frac{1}{2})}$ $=\displaystyle \frac{1-\frac{1}{1024}}{\frac{3}{2}}=\frac{\frac{1023}{1024}}{\frac{3}{2}}=\frac{1023\cdot 2}{1024\cdot 3}$ $=\displaystyle \frac{341}{512}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.