Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.3 The Indefinite Integral - Exercises - Page 252: 28

Answer

$$\frac{1}{2}\theta^2+\tan\theta +C$$

Work Step by Step

$\int(\theta+\sec^2\theta)d\theta$ Given $$\int{x}dx=\frac{1}{2}x^2+C$$ and$$\int\sec^2{x}dx=\tan{x}+C$$ Thus, $\int(\theta+\sec^2\theta)d\theta$ $=\frac{1}{2}\theta^2+\tan\theta +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.