Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - Chapter Review Exercises - Page 593: 128

Answer

$F\left( x \right) = \mathop \smallint \limits_0^x \dfrac{{{{\rm{e}}^t} - 1}}{t}{\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{x^n}}}{{n\cdot n!}}$

Work Step by Step

From Table 2 of Section 11.7, we have ${{\rm{e}}^t} = \mathop \sum \limits_{n = 0}^\infty \dfrac{{{t^n}}}{{n!}} = 1 + t + \dfrac{{{t^2}}}{{2!}} + \dfrac{{{t^3}}}{{3!}} + \dfrac{{{t^4}}}{{4!}} + \cdot\cdot\cdot$, ${\ \ \ }$ converges for all $t$. So, ${{\rm{e}}^t} - 1 = t + \dfrac{{{t^2}}}{{2!}} + \dfrac{{{t^3}}}{{3!}} + \dfrac{{{t^4}}}{{4!}} + \cdot\cdot\cdot$ $\dfrac{{{{\rm{e}}^t} - 1}}{t} = 1 + \dfrac{t}{{2!}} + \dfrac{{{t^2}}}{{3!}} + \dfrac{{{t^3}}}{{4!}} + \cdot\cdot\cdot$ Integrating both sides: $\mathop \smallint \limits_0^x \dfrac{{{{\rm{e}}^t} - 1}}{t}{\rm{d}}t = \mathop \smallint \limits_0^x \left( {1 + \dfrac{t}{{2!}} + \dfrac{{{t^2}}}{{3!}} + \dfrac{{{t^3}}}{{4!}} + \cdot\cdot\cdot} \right){\rm{d}}t$ $\mathop \smallint \limits_0^x \dfrac{{{{\rm{e}}^t} - 1}}{t}{\rm{d}}t = \left( {t + \dfrac{{{t^2}}}{{2\cdot 2!}} + \dfrac{{{t^3}}}{{3\cdot 3!}} + \dfrac{{{t^4}}}{{4\cdot 4!}} + \cdot\cdot\cdot} \right)|_0^x$ $\mathop \smallint \limits_0^x \dfrac{{{{\rm{e}}^t} - 1}}{t}{\rm{d}}t = x + \dfrac{{{x^2}}}{{2\cdot 2!}} + \dfrac{{{x^3}}}{{3\cdot 3!}} + \dfrac{{{x^4}}}{{4\cdot 4!}} + \cdot\cdot\cdot$ Thus, $F\left( x \right) = \mathop \smallint \limits_0^x \dfrac{{{{\rm{e}}^t} - 1}}{t}{\rm{d}}t = \mathop \sum \limits_{n = 1}^\infty \dfrac{{{x^n}}}{{n\cdot n!}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.